Dga Domain Names
ثبت نشده
چکیده
Recently several different deep learning architectures have been proposed that take a string of characters as the raw input signal and automatically derive features for text classification. Little studies are available that compare the effectiveness of these approaches for character based text classification with each other. In this paper we perform such an empirical comparison for the important cybersecurity problem of DGA detection: classifying domain names as either benign vs. produced by malware (i.e., by a Domain Generation Algorithm). Training and evaluating on a dataset with 2M domain names shows that there is surprisingly little difference between various convolutional neural network (CNN) and recurrent neural network (RNN) based architectures in terms of accuracy, prompting a preference for the simpler architectures, since they are faster to train and less prone to overfitting.
منابع مشابه
Dga Domain Names
Recently several different deep learning architectures have been proposed that take a string of characters as the raw input signal and automatically derive features for text classification. Few studies are available that compare the effectiveness of these approaches for character based text classification with each other. In this paper we perform such an empirical comparison for the important c...
متن کاملA Comprehensive Measurement Study of Domain Generating Malware
Recent years have seen extensive adoption of domain generation algorithms (DGA) by modern botnets. The main goal is to generate a large number of domain names and then use a small subset for actual C&C communication. This makes DGAs very compelling for botmasters to harden the infrastructure of their botnets and make it resilient to blacklisting and attacks such as takedown efforts. While early...
متن کاملFrom Throw-Away Traffic to Bots: Detecting the Rise of DGA-Based Malware
Many botnet detection systems employ a blacklist of known command and control (C&C) domains to detect bots and block their traffic. Similar to signature-based virus detection, such a botnet detection approach is static because the blacklist is updated only after running an external (and often manual) process of domain discovery. As a response, botmasters have begun employing domain generation a...
متن کاملDGA Detection Using Machine Learning Methods
A botnet is a network of private computers infected with malicious software and controlled as a group without the knowledge of the owners. Botnets are used by cyber criminals for various malicious activities such as stealing sensitive data, sending spam, launching Distributed Denial of Service (DDoS) attacks, etc. A Command and Control (C&C) server sends commands to the compromised hosts for ex...
متن کاملDGA-Based Botnet Detection Using DNS Traffic
In recent years, an increasing number of botnets use Domain Generation Algorithms (DGAs) to bypass botnet detection systems. DGAs, also referred as “domain fluxing”, has been used since 2004 for botnet controllers, and now become an emerging trend for malware. It can dynamically and frequently generate a large number of random domain names which are used to prevent security systems from detecti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017